


To that end, we further propose to leverage estimated IoU
(intersection over union) as a localization quality measure
for pseudo-label �ltering. IoU estimation was �rst proposed
in the context of 2D object detection as a localization con-
�dence in the pioneering work IoU-Net [12], where esti-
mated IoU was proven successful in replacement of class
con�dence for test-time Non-Maximal Suppression (NMS).
To the best of our knowledge, leveraging IoU estimation for
pseudo-label �ltering is a novel idea for SSL on both 2D
and 3D object detection. Equipping the detectors with a 3D
IoU estimation module, we are able to �lter out poorly lo-
calized pseudo-labels and leverage estimated IoU for both
train-time and test-time NMS.

A key challenge when �ltering based on IoU estima-
tion is how to properly set the threshold. Unlike object-
ness and class con�dence for which high threshold values
(e.g. 0.9) work well, 3D IoU is more sensitive to small er-
rors. Setting the threshold too high would reduce the num-
ber of pseudo-labels to very few, from which little could
be learned. To balance between quality and coverage, we
propose a two-stage �ltering process: �rst, using a rela-
tively low IoU threshold; then, an IoU-guided class-aware
Lower-Half Suppression(LHS) that removes only half of
the highly-overlapping boxes with low predicted IoU. Our
proposed LHS thus naturally sets a threshold that is both
dynamic and class-aware. Our experiments show that LHS
outperforms IoU-guided NMS, which suppresses all but the
top one during semi-supervised training.

Our method consistently improves upon the previ-
ous state-of-the-art method, SESS [34], on both Scan-
Net and SUN-RGBD benchmarks by signi�cant mar-
gins. When using only 10% labeled data on ScanNet,
3DIoUMatch outperforms SESS by 7.7 absolute improve-
ment on mAP@0.25 and by 8.5 absolute improvement on
mAP@0.5. When using 5% labeled data on SUN-RGBD,
3DIoUMatch outperforms SESS by 4.8 absolute improve-
ment on mAP@0.25 and by 8.0 absolute improvement on
mAP@0.5. On KITTI, we are the �rst to demonstrate semi-
supervised 3D object detection work and surpass fully-
supervised baseline by large margins under all label ratios.

Our main contributions can be summarized as follows:
1. We propose a novel semi-supervised method for 3D

object detection in point clouds based on pseudo-label
propagation along with a carefully designed �ltering
mechanism.

2. For the �rst time, we leverage predicted 3D IoU as a lo-
calization con�dence score for pseudo-label �ltering,
and further propose IoU-guided Lower-Half Suppres-
sion for robust pseudo-label deduplication. This idea
is generally applicable and can be coupled to different
3D detectors on both indoor and outdoor scenes.

3. We achieve markedly improved performance over the
previous state-of-the-art semi-supervised 3D object

detection methods on the two major indoor object de-
tection benchmarks, ScanNet and SUN-RGBD, under
low label ratios and fully labeled setting. As the �rst
semi-supervised 3D object detection work on KITTI,
we also achieve signi�cant improvements compared to
fully supervised method.

2. Related Works

Semi-Supervised Learning (SSL) Many of the recent
SSL methods [2, 31, 1] leverage consistency regularization,
�rst proposed in [23, 13], which enforces the model to pre-
dict consistently across label-preserving data augmentation
of different intensity. Borrowing the concept from Mean
Teacher [29], the model with frozen weight can be viewed
as the teacher model, otherwise student model. Some meth-
ods [2], following Mean Teacher, make the teacher model
as the EMA of the student model for further regularization.
Pseudo labeling [15] is another popular class of SSL method
which can also be treated as a kind of consistency regu-
larization, as one output of the unlabeled data is enforced
to be consistent with the other (the pseudo-labels) by be-
ing supervised with the other. To improve the quality of
pseudo-labels, FixMatch [26], a state-of-the-art SSL work
on image classi�cation, has shown that the student network
can improve signi�cantly by setting a classi�cation con�-
dence threshold� cls and �ltering out low-con�dence pre-
dictions from the teacher. With the �ltered pseudo-labels,
the student model only gets supervised on the unlabeled
data whose pseudo-labels are kept. Another key factor to
the success of these methods is strong data augmentation.
It has been shown crucial to many SSL works [23, 13, 31].
Recent works [1, 26] proposed to adopt even more powerful
augmentation such as RandAugment [3] and Cutout [5].

Semi-Supervised Object Detection Since the beginning
of the deep learning era, tremendous progress has been
made in 2D object detection, e.g region-based detectors [9,
8, 22] and single-stage detectors [16, 21, 30]. Similarly
in 3D object detection, a number of deep learning meth-
ods have been proposed for different 3D data modalities,
e.g. RGBD-based detectors [19, 17], point-based detec-
tors [33, 25, 14, 18], voxel-based detectors [35], point-
voxel-based detectors [24], etc.

Despite the great progress in both 2D and 3D object de-
tection, most works focused on a fully-supervised setting.
A few works [10, 6] have proposed to leverage unlabeled
data or weakly-annotated data for 2D object detection. Un-
der a standard SSL setting as we follow, CSD [11] proposed
a consistency regularization method to enforce the consis-
tency between predictions from an image and its �ipped
version. STAC [27] adopts a two-stage scheme for training
Faster R-CNN [22]: in the �rst stage it pre-trains a detector
with labeled data only and then predicts the pseudo labels
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a set of unlabeled scenesf x u
i gN u

i =1 , whereN l andNu are
the number of labeled and unlabeled scenes, respectively.
For a labeled scenex , the labely comprises bounding box
parametersf b( j ) g and semantic class labelsf q( j ) g of all
ground truth objectsf o( j ) g.

3.2. IoUaware 3D Object Detection

We experiment our SSL method on two 3D detectors,
VoteNet [18] and PV-RCNN [24]. VoteNet is a single-stage
indoor point cloud detector while PV-RCNN is a two-stage
outdoor point cloud detector. They both take point clouds
only for inputs and output a list of bounding boxes after
Non-Maximum Suppression (NMS) for each scene, which
contain the prediction of center, size, orientation and se-
mantic class. However, their architecture are very different
partly due to the great discrepancy between indoor and out-
door scenes.
Indoor scene detector: VoteNetVoteNet [18] is built
upon PointNet++ [20] backbone, and �rst processes the in-
put point cloudf x i gN

i =1 to generate a sub-sampled set of
M < N seed points enriched with high-dimensional fea-
turesf [x i ; f i ] 2 R3+ C gM

i =1 . Next, each seed point votes
for the center of the object it belongs to, and the votes
are grouped intoK clusters. Finally, each of the K vote
clusters is aggregated to make a prediction of a 3D bound-
ing box parametersb(k ) , a corresponding objectness score
sk = P(b(k ) is an object), and a probability distribution
f pcls g overL possible semantic classes. The bounding box
parametersb are its center locationc 2 R3, scaled 2 R3,
and orientation� around the upright axis.

At train time, VoteNet jointly minimizes a weighted
combination of the following target losses: vote coordi-
nate regression, objectness score binary classi�cation, box
center regression, bin classi�cation and residual regression
for heading angle, scale regression, and category classi�ca-
tion. At test time, VoteNet applies Non-Maximum Suppres-
sion (NMS) based on objectness score to remove duplicated
bounding boxes. Here, we instead rely on a 3D IoU estima-
tion module designed for VoteNet. For more details, refer
to the supplementary materials.
Outdoor scene detector: PV-RCNNPV-RCNN[24] is a
high-performance and ef�cient LiDAR point cloud detector
that deeply integrates both 3D voxel CNNs and PointNet++-
style set abstraction to learn more discriminative point cloud
features. Speci�cally, PV-RCNN �rst passes the 3D scene
through a novel voxel set abstraction module based on
sparse 3D CNN to get a set of keypoints with representa-
tive scene features. Then RoI grid pooling is then applied to
the keypoints to abstract proposal-speci�c features into RoI
grid points. The RoI grid points containing rich context in-
formation are �nally used to accurately estimate bounding
box parameters.

PV-RCNN itself incorporates an IoU-estimation module

which can predict the IoU of each bounding box and use it
to guide the sorting of the boxes.

3.3. 3DIoUMatch for SSL on 3D object detection

We take VoteNet as our example and our method with
PV-RCNN is similar. With the incorporation of 3D IoU
module into VoteNet, we construct an IoU-aware VoteNet
for SSL on 3D object detection. Our proposed solution
is comprised of two training stages: a pre-training stage,
where we train our IoU-aware VoteNet on the labeled data,
followed by an SSL stage where the entire data is utilized
by pseudo-labeling the unlabeled scenes.

Pre-training. We start by training our IoU-aware VoteNet
in a supervised manner, using the labeled setf x l

i ; y l
i g

N l
i =1 .

The training loss is a sum over the original VoteNet losses
L votenetand 3D IoU lossL IoU. Once converged, we clone the
network to create a pair of student and teacher networks.

Semi-supervised training through a teacher-student
framework. We follow a teacher-student mutual learn-
ing framework [29] and train our networks on both labeled
f x l

i ; y l
i g

N l
i =1 and unlabeled dataf x u

i gN u
i =1 . Each training

batch contains a mixture off x l
i g

B l
i =1 labeled samples and

f x u
i gB u

i =1 unlabeled samples.
For labeled samples, we supervise the student network

using ground truth supervisions (as done in the pre-training
stage) whereas for unlabeled samples, the student networks
is supervised using pseudo-labelsf ~y u

i gN u
i =1 generated from

the teacher network. The �nal loss is formed as:

L = L l (f x l
i g

N l
i =1 ; f y l

i g
N l
i =1 ) + � u L u (f x u

i gN u
i =1 ; f ~y u

i gN u
i =1 )

where� u is the unsupervised loss weight.
To succeed in semi-supervised learning, it is crucial for

the teacher network to generate high-quality pseudo-labels
and maintain a reliable performance margin over the stu-
dent network throughout the training. As commonly used
in SSL literature, e.g. Mean Teacher [29] and SESS [34],
we adopt an EMA teacher. We further leverage asymmetric
data augmentation and pseudo-label �ltering (see Sec.3.4).

To be in a position of advantage, the teacher network
takes input data with weak augmentation only while the stu-
dent network uses stronger data augmentation. We share
the same data augmentation strategy with SESS. The input
point clouds to our teacher network are augmented only by
random sub-sampling while the inputs to the student net-
work further undergo a set of stochastic transformationT ,
including random �ip, random rotation around the upright
axis, and a random uniform scaling.

3.4. PseudoLabel Filtering and Deduplication

In the teacher-student framework, the performance gap
between the teacher and the student is usually quite
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marginal given that these two models are just different by
EMA on weight and data augmentation strength. Hence,
it is not always true that the teacher prediction is more ac-
curate than the student's on a speci�c training sample. On
unlabeled data, the student model will only bene�t from the
pseudo-labels that are more accurate than its predictions.
Therefore we should �lter out low-quality predictions from
the teacher model and only supervise the student model with
the rest of the teacher model predictions.

Jointly �ltering based on class, objectness, localization
con�dences For VoteNet, we propose to set an objectness
threshold� obj and �lter out bounding box predictions with
objectness scores < � obj . We further propose to set a clas-
si�cation con�dence threshold� cls for �ltering out predic-
tions that are likely to contain a wrong class label.

Note that none of these two con�dence measures cap-
ture the accuracy of bounding box parameter predictions.
We propose to predict a 3D IoU for each predicted bound-
ing box, use the 3D IoU estimation as a localization con-
�dence, and set a localization threshold� IoU to �lter out
poorly localized predictions. Formally, we remove all the
predictions that fail to satisfy all three con�dence thresh-
olds, i.e.s > � obj , max(pcls ) > � cls , andv > � IoU.

IoU-guided lower-half suppression for deduplication
After the con�dence-based �ltering, there is still a lot of du-
plicated bounding box predictions that may introduce harm-
ful noise to our pseudo-labels. NMS is a standard process
in object detection for duplicate removal before evaluation,
which takes a set of highly overlapped bounding box pre-
dictions that share the same class prediction, ranks them ac-
cording to a con�dence score and removes all but the top-1
prediction. STAC [27] applies class con�dence based NMS
to teacher predictions during pseudo-label generation.

The default NMS used in VoteNet is based on object-
ness con�dence. Given that objectness score doesn't cap-
ture the localization quality, a train-time IoU-guided NMS
will naturally perform better (see Table.2), where we use
the product of predicted IoU and predicted objectness as
the ranking metric. However, using the top one selected
by IoU-guided NMS can still be suboptimal, since the pre-
dicted IoU will inevitably carry some errors. We argue that
different from the test time scenario, pseudo-labels do not
need to be fully deduplicated. Imagine this situation: if a
bounding box predicted by the student is0:2m to the left of
its corresponding ground truth, it is a foreground object and
will get bounding box supervision in VoteNet. However, if
unfortunately the pseudo-label survives after non-maximal
suppression is to the right of the ground truth more than
0:1m, this predicted bounding box may lose supervision
and be treated as a background box. This example shows
that strict non-maximal suppression can lead to a smaller
number of student model predictions that can receive super-

vision. Since we cannot know the best pseudo label among
a bunch of highly-overlapped ones, it's �ne to be less strict.
To this end, we propose a novel Lower-Half Suppression,
or in short, LHS, that only discards half of the proposals
with lower predicted IoU. We argue that since LHS sup-
presses bounding boxes sharing the same class label, this
suppression can be seen as a second-step class-aware self-
adjusted �ltering, which sets dynamic thresholds among the
overlapping bounding boxes to keep the ones with higher
con�dence and hence �nd a better balance between pseudo-
label quality and the amount of supervision. We also use
the product of predicted IoU and predicted objectness as
the con�dence metric.

Final-step pseudo-label processing After the �ltering
and IoU-guided LHS, we now have high-quality predic-
tions f ŷu

T gK 0

k=1 from the teacher network, whereK 0 is the
number of bounding boxes remains. Given that the student
model inputs go through a stronger augmentation including
an additional geometric transformationT , in synchronize
with the student model inputs, the bounding box parameters
of the pseudo-labels need to go through the same transfor-
mationT , namely~b

u
= T (b̂

u
T ). We further take convert

the predicted class probability distributionp̂u
T into semantic

class label via~qu = max( p̂u
T ). Now we obtain the �ltered

pseudo-labels~y = f ~b
u
; ~qu gK 0

k=1 .

3.5. Selective Supervision using PseudoLabels

For our generated pseudo-labels, there is no guarantee
that the labels can cover all the ground truth objects from
O due to the �ltering and potentially inaccurate teacher pre-
dictions. Given the incompleteness of our �ltered pseudo-
labels, we are relatively con�dent about the bounding boxes
in this set but student predictions far away from all of our
pseudo-labels are not necessarily negative. Our experiments
show that supervising objectness on unlabeled data using
the pseudo-labels seriously hurts the performance. For sim-
ilar reasons, we do not supervise vote loss, which is a unique
element in VoteNet and not shown in other detectors. For
more analysis and experimental proof for this, we refer the
readers to the supplementary materials. In this case, we will
only supervise the bounding boxes in the vicinity of the
pseudo bounding boxes and aim to improve their bound-
ing box quality. More speci�cally, we stick to the way
how VoteNet select foreground objects for bounding box
parameter supervision: we supervise bounding box param-
eters and class for a prediction only if the vote that gener-
ates this prediction is within0:3m of any bounding box in
the pseudo-labels. For this set of pseudo-foreground pre-
dictions, we adopt the same way that VoteNet establishes
association and enforce original VoteNet losses except for
objectness loss and vote loss.
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5% 10% 20% 100%
Dataset Model mAP

@0.25
mAP
@0.5

mAP
@0.25

mAP
@0.5

mAP
@0.25

mAP
@0.5

mAP
@0.25

mAP
@0.5

ScanNet

VoteNet 27.9±0.5 10.8±0.6 36.9±1.6 18.2±1.0 46.9±1.9 27.5±1.2 57.8 36.0
SESS reported n n 39.7±0.9 18.6 47.9±0.4 26.9 62.1 38.8

SESS 32.0±0.7 14.4±0.7 39.5±1.8 19.8±1.3 49.6±1.1 29.0±1.0 61.3 39.0
Ours 40.0±0.9 22.5±0.5 47.2±0.4 28.3±1.5 52.8±1.2 35.2±1.1 62.9 42.1

Abs. improve. +8.0 +8.1 +7.7 +8.5 +3.2 +6.2 +1.6 +3.1

SUN-RGBD

VoteNet 29.9±1.5 10.5±0.5 38.9±0.8 17.2±1.3 45.7±0.6 22.5±0.8 58.0 33.4
SESS reported n n 42.9±1.0 14.4 47.9±0.5 20.6 61.1 37.3

SESS 34.2±2.0 13.1±1.0 42.1±1.1 20.9±0.3 47.1±0.7 24.5±1.2 60.5 38.1
Ours 39.0±1.9 21.1±1.7 45.5±1.5 28.8±0.7 49.7±0.4 30.9±0.2 61.5 41.3

Abs. improve. +4.8 +8.0 +3.4 +7.9 +2.6 +6.4 +1.0 +3.2

Table 1. Comparison with VoteNet and SESS on ScanNet val set and SUN RGB-D val set under different ratios of labeled data. We report
the mAP@0.25 and mAP@0.5 as mean±standard deviation across 3 runs under different random data splits. Due to the randomness of the
data splits and our better pre-training protocol, SESS results provided by us are higher than those reported in the paper on mAP@0.5, and
the mAP@0.25 results differ a little (the only difference is the pre-trained weights and data splits). The �nal improvement is the absolute
improvement of our method over SESS results provided by us. Following SESS, we also report the results with 100% labeled data, where
we simply make a copy of the full dataset as unlabeled data and train our method.

4. Experiments

4.1. Datasets and Evaluation Metrics

Indoor Datasets: ScanNet and SUNRGB-D We eval-
uate our VoteNet-based 3DIoUMatch on two major in-
door datasets, ScanNet [4] and SUN RGB-D [28]. Scan-
Net is an indoor scene dataset consisting of 1513 recon-
structed meshes, among which 1201 are training samples
and the rest are validation samples. SUN RGB-D contains
10335 RGB-D images of indoor scenes which are split into
5285 training samples and 5050 validation samples. For
both datasets, we follow [18, 34] for pre-processing data
and labels to train our method and we report mAP@0.25
(mean average precision with 3D IoU threshold 0.25) and
mAP@0.5 in the following experiments.

Outdoor Dataset: KITTI As for our PV-RCNN-based
3DIoUMatch, we use KITTI for evaluation. KITTI [7] is a
very popular dataset for autonomous driving which consists
of �ne annotations for 3D detection. There are 7481 out-
door scenes for training and 7518 for testing, and the train-
ing samples are generally divided into a train split of 3712
samples and a validation split of 3769 samples. We fol-
low [24] for data pre-processing and report the mAP with
40 recall positions, with a rotated IoU threshold 0.7, 0.5,
0.5 for the three classes, car, pedestrian, and cyclist, respec-
tively.

4.2. Experiments on Indoor Scene Datasets

For experiments on indoor datasets,i.e., ScanNet and
SUNRGB-D, we use IoU-aware VoteNet as our backbone
detector.

4.2.1 Result Comparison

Table1 shows the results of our method compared to SESS
and VoteNet under different ratios of labeled data on Scan-
Net and SUN RGB-D, respectively. The results illustrate
that, with our effective train-time �ltering and test-time im-
provement leveraging IoU estimation, we are able to signif-
icantly outperform current state-of-the-art, SESS, under all
labeled ratio settings. With 5% labeled data, our method
outperforms SESS by8.1and8.0on mAP@0.5 on ScanNet
and SUN RGB-D, respectively. Note that our method gains
more improvement on mAP@0.5, thanks to the high quality
of pseudo labels and the IoU guidance for test-time NMS.

4.2.2 Ablation Study

Filtering and Deduplication Mechanism. We study the
effect of each component of the �ltering and deduplication
mechanism. In Table2, the second row shows the results
of naive pseudo labeling, which takes all predictions from
the teacher model for supervision. Expectedly the results
are not satisfying, only a little higher than VoteNet. Simply
applying the dual �ltering of classi�cation and objectness
con�dence gives signi�cant improvement, as the �ltering
picks out the teacher model proposals that are very likely to
be close to true objects and have the correct class. The con-
ventional objectness-based NMS in VoteNet, however, fails
to improve further, since the remaining proposals already
have high objectness scores and the objectness-based NMS
is not capable of picking the ones with higher localization
accuracy.

As shown in the �fth and sixth row, after we introduce
IoU during train time, IoU �ltering and train-time IoU-
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SESS [34]. We then use those pre-trained weights to ini-
tialize the student and teacher networks. For the SSL stage,
we construct each batch by taking 4 labeled samples and 8
unlabeled samples, with the same data augmentation. The
weights of different loss terms are the same as VoteNet and
we set� u = 2 . The student network is trained for 1000
epochs (the labeled data is traversed in one epoch), opti-
mized by an ADAM optimizer with an initial learning rate
of 0.002, and the learning rate is decayed by 0.3, 0.3, 0.1,
0.1 at the 400th, 600th, 800th and 900th epoch, respectively.
The number of generated 3D proposals is 128. We use
k = 3 ; D = 4 for the IoU module. The three thresholds
are set to be� obj = 0 :9; � cls = 0 :9; � IoU = 0 :25. For more
details, we refer the readers to the supplementary materials.

Inference We forward the input to the student network
to generate proposals. We �rst apply IoU optimization to
re�ne box parameters following IoU-Net [12], followed by
an IoU-guided NMS with a 3D IoU threshold of 0.25.

4.3. Experiments on KITTI

For experiments on the KITTI dataset, we adopt PV-
RCNN[24] as our backbone. PV-RCNN itself comes with
a 3D IoU module, allowing to use it in our semi-supervised
learning pipeline without modifying its architecture.

4.3.1 Results

We evaluate our method on KITTI validation set. Table3
demonstrates signi�cant and consistent improvement across
all categories with 1%, 2%, and 100% labeled data, com-
pared to supervised training only. Similar to our experi-
ments on indoor scene datasets, here the 100% labeled data
setting means making a copy of the full dataset as unla-
beled data and train the network using our devised semi-
supervised pipeline. With 1% labeled data, our method out-
performs the labeled-data-only baseline by 6.6 mAP@0.5
on pedestrian, which is the most challenging class.

4.3.2 Ablation Study

We conduct ablation studies on KITTI with 1% labeled data.
Table4 shows our improvements compared with a pseudo-
label baseline and �ltering based on class con�dence only.
The results validate the effectiveness of our IoU-based lo-
calization con�dence �ltering.

4.3.3 Implementation Differences with VoteNet

In KITTI, we only care about three classes, car, pedestrian,
and cyclist, which differ a lot in the dif�culty to detect. In-
stead of using LHS, we follow PV-RCNN to set different
IoU thresholds for each individual class,i.e., � car = 0 :8,
� ped = � cyc = 0 :4. We selectively supervise the predictions
that meet the foreground bar in PV-RCNN according to our

1% 2% 100%
Car Ped. Cyc. Car Ped. Cyc. Car Ped. Cyc.

PVR. 77.3 47.8 62.9 80.4 47.1 63.5 83.0 57.9 73.1
Ours 80.7 54.4 67.3 82.0 54.6 69.5 84.8 60.2 74.9

Table 3.3D detection results on KITTI val set with different
labeled ratios. The results are for moderate dif�culty level eval-
uated by the mAP with 40 recall positions, with a rotated IoU
threshold 0.7, 0.5, 0.5 for the three classes, respectively.

Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PVR. 89.6 77.3 74.1 54.9 47.8 42.3 80.4 62.9 58.7
naive psd.-lb. 91.1 78.8 76.1 58.9 51.3 45.4 82.6 65.5 60.8

cls. thres. only 90.8 79.7 76.8 63.2 55.0 49.7 84.9 65.0 61.2
Ours 91.6 80.7 78.1 63.3 54.4 49.5 86.5 67.3 62.8

Table 4.Ablation study on KITTI 1% labeled data. Same eval-
uation metric as Table 1.

pseudo-labels. In contrast to VoteNet, PV-RCNN is a two-
stage detector containing an RPN. Bounding box object-
ness (or foreground probability) has been predicted in the
RPN and used to pick top 100 proposals to forward to the
RoI head. We therefore only additionally �lter according to
classi�cation con�dence with the threshold� cls = 0 :2. Due
to the non-differentiability of the IoU module of PV-RCNN,
we also do not apply IoU optimization.

We also adopt a two-stage training scheme for our PV-
RCNN-based 3DIoUMatch. We use an unlabeled weight
� u = 2 and only supervise anchor classi�cation and bound-
ing box regression in PV-RCNN on unlabeled data. Please
refer to the supplementary materials for more details.

5. Conclusion

In this paper, we propose 3DIoUMatch, a novel semi-
supervised 3D object detection method leveraging IoU es-
timation. Built upon a teacher-student mutual learning
framework, we leverage asymmetric data augmentation and
pseudo-label �ltering and deduplication to facilitate the stu-
dent learning from the EMA teacher. With our IoU esti-
mation module, we make �ltering and deduplication aware
of localization con�dence and apply test-time IoU-guided
NMS and IoU optimization, leading to further improve-
ment. Experiment results on the ScanNet, SUN-RGBD, and
KITTI datasets validate the effectiveness of our method:
we achieve signi�cant gain over the previous state-of-the-
art methods and baselines under all settings. Our idea of
leveraging IoU estimation for semi-supervised learning is
generally applicable to different kinds of 3D object detec-
tors and can be extended to 2D detectors as future works.
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